Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Sensors and Actuators B: Chemical ; 392:134111, 2023.
Article in English | ScienceDirect | ID: covidwho-20245347

ABSTRACT

Colorimetric biosensors are simple but effective tools that are gaining popularity due to their ability to provide low-cost, rapid, and accurate detection for viruses like the Novel coronavirus, Influenza A, and Dengue virus, especially in point-of-care testing (POCT) and visual detection. In this study, a smartphone-assisted nucleic acid POCT was built using hybridization chain reaction (HCR), magnetic beads (MBs), and oxidized 3,3′,5,5′-tetramethylbenzidine (TMB2+)-mediated etching of gold nanorods (GNRs). The application of HCR without enzyme isothermal characteristics and MBs with easy separation, can quickly amplify nucleic acid signal and remove other reaction components. The blue shift of longitudinal localized surface plasmon resonance (LSPR) based on GNRs showed significant differences in etching color for different concentrations of target nucleic acid, which convert the signal into a visually semi-quantitative colorimetric result, achieving quantitative analysis with the color recognition software built into smartphones. This strategy, which only takes 40 min to detect and is two-thirds less time than the PCR, was successfully applied for the detection of the Dengue target sequence with a detection limit of 1.25 nM and exhibited excellent specificity for distinguishing single-base mutations, indicating broad application prospects in clinical laboratory diagnosis and enriching the research of nucleic acid POCT.

2.
J Biophotonics ; 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-20241012

ABSTRACT

Flow cytometry (FC) is a versatile tool with excellent capabilities to detect and measure multiple characteristics of a population of cells or particles. Notable advancements in in vivo photoacoustic FC, coherent Raman FC, microfluidic FC, and so on, have been achieved in the last two decades, which endows FC with new functions and expands its applications in basic research and clinical practice. Advanced FC broadens the tools available to researchers to conduct research involving cancer detection, microbiology (COVID-19, HIV, bacteria, etc.), and nucleic acid analysis. This review presents an overall picture of advanced flow cytometers and provides not only a clear understanding of their mechanisms but also new insights into their practical applications. We identify the latest trends in this area and aim to raise awareness of advanced techniques of FC. We hope this review expands the applications of FC and accelerates its clinical translation.

3.
Huan Jing Ke Xue ; 44(5): 2430-2440, 2023 May 08.
Article in Chinese | MEDLINE | ID: covidwho-20237414

ABSTRACT

To investigate the change characteristics of secondary inorganic ions in PM2.5 at different pollution stages before and after COVID-19, the online monitoring of winter meteorological and atmospheric pollutant concentrations in Zhengzhou from December 15, 2019 to February 15, 2020 was conducted using a high-resolution (1 h) online instrument. This study analyzed the causes of the haze process of COVID-19, the diurnal variation characteristics of air pollutants, and the distribution characteristics of air pollutants at different stages of haze.The results showed that Zhengzhou was mainly controlled by the high-pressure ridge during the haze process, and the weather situation was stable, which was conducive to the accumulation of air pollutants. SNA was the main component of water-soluble ions, accounting for more than 90%. Home isolation measures during COVID-19 had different impacts on the distribution characteristics of air pollutants in different haze stages. After COVID-19, the concentration of PM2.5 in the clean, occurrence, and dissipation stages increased compared with that before COVID-19 but significantly decreased in the development stage. The home isolation policy significantly reduced the high value of PM2.5. The concentrations of NO2, SO2, NH3, and CO were the highest in the haze development stage, showing a trend of first increasing and then decreasing. The concentration of O3 was lowest in the pre-COVID-19 development stage but highest in the post-COVID-19 development stage. The linear correlation between[NH4+]/[SO42-] and[NO3-]/[SO42-] at different time periods before and after COVID-19 was strong, indicating that the home isolation policy of COVID-19 did not change the generation mode of NO3-, and the corresponding reaction was always the main generation mode of NO3-. The correlation between[excess-NH4+] and[NO3-] was high in different periods before COVID-19, and NO3- generation was related to the increase in NH3 or NH4+ in the process of PM2.5 pollution in Zhengzhou.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Particulate Matter/analysis , Environmental Monitoring/methods , COVID-19/epidemiology , Respiratory Aerosols and Droplets , Air Pollutants/analysis , Air Pollution/analysis , Ions/analysis , Seasons , China/epidemiology
4.
Energy Economics ; : 106708, 2023.
Article in English | ScienceDirect | ID: covidwho-2320901

ABSTRACT

We use the time-varying parameter structural vector autoregression stochastic volatility (TVP-SVAR-SV) and causality-in-quantiles methods to explore the linkage between market liquidity and efficiency in the European Union Emissions Trading Scheme (EU ETS) during Phase III. Our results show that two-way causality existed under normal and lower market conditions. Additionally, the linkage between liquidity and efficiency exhibits time-varying characteristics. Except in cases of extremely high market liquidity, the pass-through effect of liquidity on efficiency is mostly positive in the long run. The linkage is stronger in the medium and long term, but the response of liquidity to efficiency shocks is more complicated. Market efficiency has an overall inhibitory effect on liquidity in the short term and a promoting effect in the medium and long term. Furthermore, we investigate the impulse response during the COVID-19 period and the war between Russia and Ukraine and find that improvements in efficiency will permanently damage liquidity. Overall, the abilities of market makers and arbitrage traders, impacted by multiple factors, play an important role in the process by which liquidity affects market efficiency. By revealing and explaining the dynamic relationship between liquidity and efficiency, this research provides valuable information for policymakers and various market participants.

5.
Trials ; 24(1): 266, 2023 Apr 11.
Article in English | MEDLINE | ID: covidwho-2307014

ABSTRACT

BACKGROUND: Acute respiratory syndrome distress (ARDS) is a clinical common syndrome with high mortality. Electrical impedance tomography (EIT)-guided positive end-expiratory pressure (PEEP) titration can achieve the compromise between lung overdistension and collapse which may minimize ventilator-induced lung injury in these patients. However, the effect of EIT-guided PEEP titration on the clinical outcomes remains unknown. The objective of this trial is to investigate the effects of EIT-guided PEEP titration on the clinical outcomes for moderate or severe ARDS, compared to the low fraction of inspired oxygen (FiO2)-PEEP table. METHODS: This is a prospective, multicenter, single-blind, parallel-group, adaptive designed, randomized controlled trial (RCT) with intention-to-treat analysis. Adult patients with moderate to severe ARDS less than 72 h after diagnosis will be included in this study. Participants in the intervention group will receive PEEP titrated by EIT with a stepwise decrease PEEP trial, whereas participants in the control group will select PEEP based on the low FiO2-PEEP table. Other ventilator parameters will be set according to the ARDSNet strategy. Participants will be followed up until 28 days after enrollment. Three hundred seventy-six participants will be recruited based on a 15% decrease of 28-day mortality in the intervention group, with an interim analysis for sample size re-estimation and futility assessment being undertaken once 188 participants have been recruited. The primary outcome is 28-day mortality. The secondary outcomes include ventilator-free days and shock-free days at day 28, length of ICU and hospital stay, the rate of successful weaning, proportion requiring rescue therapies, compilations, respiratory variables, and Sequential Organ Failure Assessment (SOFA). DISCUSSION: As a heterogeneous syndrome, ARDS has different responses to treatment and further results in different clinical outcomes. PEEP selection will depend on the properties of patients and can be individually achieved by EIT. This study will be the largest randomized trial to investigate thoroughly the effect of individual PEEP titrated by EIT in moderate to severe ARDS patients to date. TRIAL REGISTRATION: ClinicalTrial.gov NCT05207202. First published on January 26, 2022.


Subject(s)
Respiratory Distress Syndrome, Newborn , Respiratory Distress Syndrome , Adult , Infant, Newborn , Humans , Positive-Pressure Respiration/adverse effects , Lung , Respiratory Distress Syndrome/therapy , Prognosis , Tomography, X-Ray Computed , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
6.
AMIA Annual Symposium proceedings AMIA Symposium ; 2022:756-765, 2022.
Article in English | EuropePMC | ID: covidwho-2299946

ABSTRACT

Remote patient monitoring (RPM) programs are being increasingly utilized in the care of patients to manage acute and chronic disease including with acute COVID-19. The goal of this study is to explore the topics and patterns of patients' messages to the care team in an RPM program in patients with presumed COVID-19. We conducted a topic analysis to 6,262 comments from 3,248 patients enrolled in the COVID-19 RMP at M Health Fairview. Evaluation of comments was performed using LDA and CorEx topic modeling. Subject matter experts evaluated topic models, including identification of and defining topics and categories. Topics plotted over time to identify trends in topic weights over the enrollment period. The overall accuracy of comments assignment to topics by LDA and CorEx models were 72.8% and 88.2%. Most identified topics focused on signs and symptoms of COVID-19. Topics related to COVID-19 diagnosis demonstrated a correlation with announcements of availability of viral and antibody testing in national and local media.

8.
Building simulation ; : 1-11, 2023.
Article in English | EuropePMC | ID: covidwho-2269312

ABSTRACT

Indoor air quality becomes increasingly important, partly because the COVID-19 pandemic increases the time people spend indoors. Research into the prediction of indoor volatile organic compounds (VOCs) is traditionally confined to building materials and furniture. Relatively little research focuses on estimation of human-related VOCs, which have been shown to contribute significantly to indoor air quality, especially in densely-occupied environments. This study applies a machine learning approach to accurately estimate the human-related VOC emissions in a university classroom. The time-resolved concentrations of two typical human-related (ozone-related) VOCs in the classroom over a five-day period were analyzed, i.e., 6-methyl-5-hepten-2-one (6-MHO), 4-oxopentanal (4-OPA). By comparing the results for 6-MHO concentration predicted via five machine learning approaches including the random forest regression (RFR), adaptive boosting (Adaboost), gradient boosting regression tree (GBRT), extreme gradient boosting (XGboost), and least squares support vector machine (LSSVM), we find that the LSSVM approach achieves the best performance, by using multi-feature parameters (number of occupants, ozone concentration, temperature, relative humidity) as the input. The LSSVM approach is then used to predict the 4-OPA concentration, with mean absolute percentage error (MAPE) less than 5%, indicating high accuracy. By combining the LSSVM with a kernel density estimation (KDE) method, we further establish an interval prediction model, which can provide uncertainty information and viable option for decision-makers. The machine learning approach in this study can easily incorporate the impact of various factors on VOC emission behaviors, making it especially suitable for concentration prediction and exposure assessment in realistic indoor settings.

9.
Frontiers in cellular and infection microbiology ; 13, 2023.
Article in English | EuropePMC | ID: covidwho-2255885

ABSTRACT

A recent, unprecedented outbreak of human mpox virus infection has led to cases in non-African nations, and the number of confirmed or suspected cases outside of Africa has exceeded 1,000 within 5 weeks. Mpox may pose a double threat to public health in the context of the ongoing COVID-19 pandemic. It is difficult to distinguish mpox virus infection from other diseases in the early stages, and patients are contagious from the onset of nonspecific symptoms;therefore, it is crucial to develop rapid and specific diagnostic methods. The diagnosis of mpox relies on real-time polymerase chain reaction, a time-consuming method that requires a highly sophisticated thermal cycler, which makes it unsuitable for widespread use in underdeveloped areas, where the outbreak is still severe. In this study, we developed a recombinase-aided amplification (RAA) assay that can detect mpox virus within 5–10 minutes. The conserved regions of the A27L gene and F3L gene were selected as targets, as they amplify well from different mpox virus clades with no cross-reaction from other pathogens. The sensitivity of this RAA assay is 10 copies/reaction for the A27L gene and 102 copies/reaction for the F3L gene. When applied to simulated clinical samples, both targets showed 100% specificity, and the detection limits were consistent with the sensitivity results. Moreover, through clinical blinded sample detection, RAA exhibits the same detection power as RT-PCR. In summary, the RAA mpox assay described here exhibits rapid detection, high sensitivity and specificity, and low operational difficulty, making it suitable for mpox virus detection in less developed countries and regions.

10.
Front Psychol ; 14: 1131076, 2023.
Article in English | MEDLINE | ID: covidwho-2288614

ABSTRACT

Objective: Medical isolation is one of the most effective measures to slow the spread of the virus when dealing with a pandemic. Millions of people in China have undergone centralized medical isolation (CMI) during the COVID-19 pandemic. This study aims to assess the centralized medical isolation group's COVID-19 risk perception and to explore the influencing factors. Methods: A total of 400 participants (200 who had experienced CMI and 200 who had not experienced) completed a questionnaire related to COVID-19 risk perceptions. The questionnaire was designed with the Cognitive-Experiential Self-Theory (CEST) and the Common Sense Model of Risk Perception (CSM). It adopted nine questions to measure risk perception in terms of Emotional feelings, Cognitive judgment, and Mental representation of unusual severity. Descriptive statistical analysis, correlation analysis, and multiple linear regression analysis were conducted with SPSS 26.0 software. Results: The mean risk perception score for the CMI group was 30.75, with a standard deviation of 7.503, which was significantly higher than that in the non-centralized medical isolation (NCMI) group (risk perception score was 28.2, and the standard deviation was 7.129). The results show that risk perceptions were higher for older age, risk perceptions were higher for higher education, risk perceptions were higher for those who had received the COVID-19 vaccination, and risk perceptions were higher for those who lived in a family with children. Conclusion: Risk perception is significantly higher in CMI groups than in NCMI groups. The government should draw more care to the risk perception and psychological wellbeing of the CMI group and provide extra support and assistance to the elderly and those raising younger children. In dealing with future pandemics like the COVID-19 outbreak, the government should actively guide the public to properly isolate at home and cautiously implement a CMI policy.

11.
Build Simul ; 16(6): 915-925, 2023.
Article in English | MEDLINE | ID: covidwho-2269314

ABSTRACT

Indoor air quality becomes increasingly important, partly because the COVID-19 pandemic increases the time people spend indoors. Research into the prediction of indoor volatile organic compounds (VOCs) is traditionally confined to building materials and furniture. Relatively little research focuses on estimation of human-related VOCs, which have been shown to contribute significantly to indoor air quality, especially in densely-occupied environments. This study applies a machine learning approach to accurately estimate the human-related VOC emissions in a university classroom. The time-resolved concentrations of two typical human-related (ozone-related) VOCs in the classroom over a five-day period were analyzed, i.e., 6-methyl-5-hepten-2-one (6-MHO), 4-oxopentanal (4-OPA). By comparing the results for 6-MHO concentration predicted via five machine learning approaches including the random forest regression (RFR), adaptive boosting (Adaboost), gradient boosting regression tree (GBRT), extreme gradient boosting (XGboost), and least squares support vector machine (LSSVM), we find that the LSSVM approach achieves the best performance, by using multi-feature parameters (number of occupants, ozone concentration, temperature, relative humidity) as the input. The LSSVM approach is then used to predict the 4-OPA concentration, with mean absolute percentage error (MAPE) less than 5%, indicating high accuracy. By combining the LSSVM with a kernel density estimation (KDE) method, we further establish an interval prediction model, which can provide uncertainty information and viable option for decision-makers. The machine learning approach in this study can easily incorporate the impact of various factors on VOC emission behaviors, making it especially suitable for concentration prediction and exposure assessment in realistic indoor settings.

12.
Nat Immunol ; 24(4): 690-699, 2023 04.
Article in English | MEDLINE | ID: covidwho-2265036

ABSTRACT

The omicron variants of SARS-CoV-2 have substantial ability to escape infection- and vaccine-elicited antibody immunity. Here, we investigated the extent of such escape in nine convalescent patients infected with the wild-type SARS-CoV-2 during the first wave of the pandemic. Among the total of 476 monoclonal antibodies (mAbs) isolated from peripheral memory B cells, we identified seven mAbs with broad neutralizing activity to all variants tested, including various omicron subvariants. Biochemical and structural analysis indicated the majority of these mAbs bound to the receptor-binding domain, mimicked the receptor ACE2 and were able to accommodate or inadvertently improve recognition of omicron substitutions. Passive delivery of representative antibodies protected K18-hACE2 mice from infection with omicron and beta SARS-CoV-2. A deeper understanding of how the memory B cells that produce these antibodies could be selectively boosted or recalled can augment antibody immunity against SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Mice , Antibodies, Monoclonal , Antibodies, Viral , Antibodies, Neutralizing
13.
Front Cell Infect Microbiol ; 13: 1008783, 2023.
Article in English | MEDLINE | ID: covidwho-2255886

ABSTRACT

A recent, unprecedented outbreak of human mpox virus infection has led to cases in non-African nations, and the number of confirmed or suspected cases outside of Africa has exceeded 1,000 within 5 weeks. Mpox may pose a double threat to public health in the context of the ongoing COVID-19 pandemic. It is difficult to distinguish mpox virus infection from other diseases in the early stages, and patients are contagious from the onset of nonspecific symptoms; therefore, it is crucial to develop rapid and specific diagnostic methods. The diagnosis of mpox relies on real-time polymerase chain reaction, a time-consuming method that requires a highly sophisticated thermal cycler, which makes it unsuitable for widespread use in underdeveloped areas, where the outbreak is still severe. In this study, we developed a recombinase-aided amplification (RAA) assay that can detect mpox virus within 5-10 minutes. The conserved regions of the A27L gene and F3L gene were selected as targets, as they amplify well from different mpox virus clades with no cross-reaction from other pathogens. The sensitivity of this RAA assay is 10 copies/reaction for the A27L gene and 102 copies/reaction for the F3L gene. When applied to simulated clinical samples, both targets showed 100% specificity, and the detection limits were consistent with the sensitivity results. Moreover, through clinical blinded sample detection, RAA exhibits the same detection power as RT-PCR. In summary, the RAA mpox assay described here exhibits rapid detection, high sensitivity and specificity, and low operational difficulty, making it suitable for mpox virus detection in less developed countries and regions.


Subject(s)
COVID-19 , Monkeypox , Humans , Sensitivity and Specificity , Monkeypox virus , Recombinases , Pandemics
14.
Microbiol Spectr ; : e0214322, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2254671

ABSTRACT

The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed an enormous burden on the global public health system and has had disastrous socioeconomic consequences. Currently, single sampling tests, 20-in-1 pooling tests, nucleic acid point-of-care tests (POCTs), and rapid antigen tests are implemented in different scenarios to detect SARS-CoV-2, but a comprehensive evaluation of them is scarce and remains to be explored. In this study, 3 SARS-CoV-2 inactivated cell culture supernatants were used to evaluate the analytical performance of these strategies. Additionally, 5 recombinant SARS-CoV-2 nucleocapsid (N) proteins were also used for rapid antigen tests. For the wild-type (WT), Delta, and Omicron strains, the lowest inactivated virus concentrations to achieve 100% detection rates of single sampling tests ranged between 1.28 × 102 to 1.02 × 103, 1.28 × 102 to 4.10 × 103, and 1.28 × 102 to 2.05 × 103 copies/mL. The 20-in-1 pooling tests ranged between 1.30 × 102 to 1.04 × 103, 5.19 × 102 to 2.07 × 103, and 2.59 × 102 to 1.04 × 103 copies/mL. The nucleic acid POCTs were all 1.42 × 103 copies/mL. The rapid antigen tests ranged between 2.84 × 105 to 7.14 × 106, 8.68 × 104 to 7.14 × 106, and 1.12 × 105 to 3.57 × 106 copies/mL. For the WT, Delta AY.2, Delta AY.1/AY.3, Omicron BA.1, and Omicron BA.2 recombinant N proteins, the lowest concentrations to achieve 100% detection rates of rapid antigen tests ranged between 3.47 to 142.86, 1.74 to 142.86, 3.47 to 142.86, 3.47 to 142.86, and 5.68-142.86 ng/mL, respectively. This study provided helpful insights into the scientific deployment of tests and recommended the full-scale consideration of the testing purpose, resource availability, cost performance, result rapidity, and accuracy to facilitate a profound pathway toward the long-term surveillance of coronavirus disease 2019 (COVID-19). IMPORTANCE In the study, we reported an evaluation of 4 detection strategies implemented in different scenarios for SARS-CoV-2 detection: single sampling tests, 20-in-1 pooling tests, nucleic acid point-of-care tests, and rapid antigen tests. 3 SARS-CoV-2-inactivated SARS-CoV-2 cell culture supernatants and 5 recombinant SARS-CoV-2 nucleocapsid proteins were used for evaluation. In this analysis, we found that for the WT, Delta, and Omicron supernatants, the lowest concentrations to achieve 100% detection rates of single sampling tests ranged between 1.28 × 102 to 1.02 × 103, 1.28 × 102 to 4.10 × 103, and 1.28 × 102 to 2.05 × 103 copies/mL. The 20-in-1 pooling tests ranged between 1.30 × 102 to 1.04 × 103, 5.19 × 102 to 2.07 × 103, and 2.59 × 102 to 1.04 × 103 copies/mL. The nucleic acid POCTs were all 1.42 × 103 copies/mL. The rapid antigen tests ranged between 2.84 × 105 to 7.14 × 106, 8.68 × 104 to 7.14 × 106, and 1.12 × 105 to 3.57 × 106 copies/mL. For the WT, Delta AY.2, Delta AY.1/AY.3, Omicron BA.1, and Omicron BA.2 recombinant N proteins, the lowest concentrations to achieve 100% detection rates of rapid antigen tests ranged between 3.47 to 142.86, 1.74 to 142.86, 3.47 to 142.86, 3.47 to 142.86, and 5.68 to 142.86 ng/mL, respectively.

15.
Anal Chim Acta ; 1248: 340938, 2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2242732

ABSTRACT

CRISPR-Cas12a (Cpf1) is widely used for pathogen detection. However, most Cas12a nucleic acid detection methods are limited by a PAM sequence requirement. Moreover, preamplification and Cas12a cleavage are separate. Here, we developed a one-step RPA-CRISPR detection (ORCD) system unrestricted by the PAM sequence with high sensitivity and specificity that offers one-tube, rapid, and visually observable detection of nucleic acids. In this system, Cas12a detection and RPA amplification are performed simultaneously, without separate preamplification and product transfer steps, and 0.2 copies/µL of DNA and 0.4 copies/µL of RNA can be detected. In the ORCD system, the activity of Cas12a is the key to the nucleic acid detection; specifically, reducing Cas12a activity increases the sensitivity of ORCD assay detection of the PAM target. Furthermore, by combining this detection technique with a nucleic acid extraction-free method, our ORCD system can be used to extract, amplify and detect samples within 30 min, as verified with tests of 82 Bordetella pertussis clinical samples with a sensitivity and specificity of 97.30% and 100% compared with PCR. We also tested 13 SARS-CoV-2 samples with RT-ORCD, and the results were consistent with RT-PCR.


Subject(s)
COVID-19 , Nucleic Acids , Humans , SARS-CoV-2 , RNA , Biological Assay , Nucleic Acid Amplification Techniques
16.
Drug Deliv Transl Res ; 2022 Aug 31.
Article in English | MEDLINE | ID: covidwho-2246729

ABSTRACT

Gold nanoparticles display unique physicochemical features, which can be useful for therapeutic purposes. After two decades of preclinical progress, gold nanoconstructs are slowly but steadily transitioning into clinical trials. Although initially thought to be "magic golden bullets" that could be used to treat a wide range of diseases, current consensus has moved toward a more realistic approach, where gold nanoformulations are being investigated to treat specific disorders. These therapeutic applications are dictated by the pharmacokinetics and biodistribution profiles of gold nanoparticles. Here, we analyze the current clinical landscape of therapeutic gold nanoconstructs, discuss the shared characteristics that allowed for their transition from bench to bedside, and examine existing hurdles that need to be overcome before they can be approved for clinical use.

17.
Front Public Health ; 10: 1047142, 2022.
Article in English | MEDLINE | ID: covidwho-2237513

ABSTRACT

Introduction: The COVID-19 pandemic has been a global public health emergency, and countries worldwide have responded to it through a vast array of pre-planned, adaptively devised and ad-hoc measures. In China, public health emergency plans - the plans expected to drive the response to epidemics or pandemics - demonstrated a concerning tendency towards "ritualization." "Ritualization" denotes the practice of public health emergency plans to be reliably developed so that a formal requirement is met, while being implemented selectively or not at all in the emergency response. Methods: This study explored the phenomenon of ritualization by analyzing data from 1485 questionnaires, 60 in-depth interviews and 85 actual public health emergency plans. It used the Smith Policy-Implementation-Processing pattern as its conceptual framework. Results: The study found that the infeasibility of plans, their ineffective implementation by emergency management agencies, the obstructive behaviors of community residents, and the lack of an appropriate policy environment all contributed to the practice of ritualization. Discussion: As China seeks to better respond to COVID-19 and accelerate the recovery of its health system, it is essential to ensure that its public health emergency plans are effectively developed and implemented.


Subject(s)
COVID-19 , Public Health , Humans , COVID-19/epidemiology , Pandemics , Policy , China
18.
Genes Environ ; 45(1): 6, 2023 Feb 07.
Article in English | MEDLINE | ID: covidwho-2237511

ABSTRACT

The 7th Asian Conference on Environmental Mutagens (ACEM 2022) was held online from November 5-6, 2022. However, the 19th Chinese Environmental Mutagen Society Meeting was postponed due to the pandemic prevention policies of COVID-19 and the time will be announced later. In total, 467 participants from 8 countries, including China, Japan, Korea, Philippines, etc. participated in the virtual conference. Eight keynote speakers and 16 lecturers in 2 symposia made their speeches online on topics aligned with the theme "The Impact of Global Change on Asian Environment and Genomic Health". More than 270 abstracts were submitted in this conference. We sincerely appreciate the efforts of all the participants, organizers, and members from Asian Association of Environmental Mutagen Societies (AAEMS). ACEM 2022 was a success and provided an excellent platform for exchanging the latest developments and stimulating scientific collaboration in the Asia-Pacific region as well as other parts of the world.

19.
Front Surg ; 9: 1078933, 2022.
Article in English | MEDLINE | ID: covidwho-2237490

ABSTRACT

Objective: The study aims to compare the implementation and prognosis of emergency digit replantation surgery before and after normalized corona virus disease 2019 (COVID-19) nucleic acid testing for patients taking emergency operation and to explore the influence of normalized COVID-19 nucleic acid testing on replantation surgery. Method: Normalized COVID-19 nucleic acid testing for patients taking emergency operation has been carried out since 1 August 2021 at our hospital, which means each patient who needs emergency surgical treatment has to obtain either positive or negative results of COVID-19 nucleic acid before entering the operating room. This research reviewed and compared the prognosis of the injured extremity that had emergency severed digit replantation between June and September 2021, at the Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, and analyzed the impact of normalized COVID-19 nucleic acid testing on the outcome of the replanted fingers of different severity using disability of arm-shoulder-hand (DASH) and hand injury severity scoring (HISS) scoring systems. Results: A total of 54 cases with 74 severed replanted phalanges were included replanted by the research group between 1 August and 30 September 2021, without any COVID-19 suspected/confirmed case detected. Compared with previous period (1 June to 31 July, 2021), although the interval between emergency visits and emergency replantation did increase significantly after normalized COVID-19 nucleic acid testing [(3.83 ± 0.94) to (1.77 ± 0.67) h, P < 0.05], we observed no significant difference in the improvement rate of the DASH scoring of the disabled upper extremity 3-month postoperatively (P = 0.538) nor in the complication rate (P = 0.344). Moreover, there was no significant difference in the improvement rate of the DASH scoring of the disabled upper extremity 3-month postoperatively in patients with different traumatic severities before and after normalized COVID-19 nucleic acid testing (moderate P = 0.269, severe P = 0.055, major P = 0.149). Conclusion: Despite the preoperative delay, the policy of COVID-19 nucleic acid testing normalization does not have explicit influence on the short-term outcomes of emergency digit replantation surgery. With this evidence, microsurgeons could pay attention to the patients' anxiety and spend more effort in comforting them during the prolonged preoperative wait. These insights may have implications for other emergency department resource management whenever a social crisis occurs.

20.
J Med Virol ; 2022 Nov 24.
Article in English | MEDLINE | ID: covidwho-2237208

ABSTRACT

we designed a functionally active Mpro biosensor based on a dimerization-dependent red fluorescent protein (ddRFP) for the evaluation of Mpro inhibitors in vitro. This study provides an affordable strategy for rapid production of a versatile ddRFP biosensor, which would be a useful tool for the measurement and quantification of Mpro inhibitors This article is protected by copyright. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL